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An Optimal Order Process for Solving 
Finite Element Equations 

By Randolph E. Bank and Todd Dupont 

Abstract. A k-level iterative procedure for solving the algebraic equations which arise from 
the finite element approximation of elliptic boundary value problems is presented and 
analyzed. The work estimate for this procedure is proportional to the number of unknowns, 
an optimal order result. General geometry is permitted for the underlying domain, but the 
shape plays a role in the rate of convergence through elliptic regularity. Finally, a short 
discussion of the use of this method for parabolic problems is presented. 

1. Introduction. In this work, we discuss the iterative solution of the large sparse 
linear systems which arise in connection with finite element procedures for solving 
selfadjoint elliptic boundary value problems. We take as our prototype the Neu- 
mann problem 

(1.1) -V (aVu) + bu = f in 2, a = ? on , an 

where Q is a polygonal domain in R2. (In Section 4, we relax this assumption and 
require only that a2 be piecewise smooth.) We assume a E Cl(i2), b E C(Q) and 
that there exist positive constants a, a, b, b such that 

a <a(x) <a-, b <b(x)5 b, forx eU. 

Then there exists a unique weak solution u E H '(Q) for all f E L2(Q). (In Section 
4, we remark on the singular case, b 0.) 

Most of our arguments are applicable, with only minor modifications, to the 
Dirichlet problem 

(1.2) -V.(aVu)+bu=f inQ2, u=0 onaQ, 

and we comment on such extensions as they arise. 
We describe a k-level iterative procedure for solving the linear equations arising 

from some finite element discretizations of (1.1). Our scheme involves a sequence 
of nested triangulations of Q, 5J, j > 1, and corresponding finite-dimensional 
subspaces 9. Our objective, of course, is to obtain an approximate solution on 
the finest triangulation. The basic idea underlying multi-level techniques is that, 
under certain circumstances, the solution of a problem on a given grid can be well 
approximated by a solution on a coarser grid. Since the coarser grids have 
(geometrically) fewer unknowns, a substantial savings in computational effort can 
result. We prove that our procedure asymptotically (as k -- oo) requires only O(Nk) 

Received November 17, 1977; revised March 24, 1980. 
1980 Mathematics Subject Classification. Primary 65N30, 65F10. 

? 1981 American Mathematical Society 
0025-5718/81/0000-0003/$05.25 

35 



36 RANDOLPH E. BANK AND TODD DUPONT 

computations to produce an O(Nj ) accurate solution, where Nk is the dimension 
of 91Tk and q is the "correct" exponent. This is an optimal order work estimate. 

Our k-level scheme is related to the multi-grid techniques of Bakhvalov [1], 
Brandt [6], Fedorenko [11], [12], and Nicolaides [17] for the solution of finite 
difference equations. However, the tools made available through the finite element 
formulation afford simplification of the analysis. For example, nonrectangular 
meshes are treated without affecting the nature of the convergence results or their 
proof. Also, in the finite difference context, there are questions of interpolation 
between various grids; these issues never explicitly arise in our treatment of the 
finite element case, but are implicitly handled by the approximation properties of 
the spaces y%. 

During the preparation of this manuscript we became aware of similar indepen- 
dent work by Nicolaides [18] and Hackbusch [14], [15]. In particular, in [14] 
Hackbusch proves results similar to Theorem 1, and in [18] Nicolaides proves a 
result similar to Corollary 1. Not only are the methods of proof used here different 
from those cited, but the procedure we treat is different in detail. Having seen their 
treatments, we feel ours is somewhat simpler. 

The remainder of the paper is organized as follows. In Section 2, we define 
terms, establish notation, and state our assumptions. In Section 3, we define and 
analyze the k-level scheme for C?-piecewise linear finite elements. In Section 4, we 
consider extensions of our method to the singular Neumann problem, to nonpolyg- 
onal 02, and to piecewise polynomial spaces of higher degree. In Section 5, we 
consider briefly one possible extension of the k-level scheme to parabolic problems. 
Once a parabolic problem has been discretized in time, it can be viewed as a 
sequence of elliptic problems, and in this section we analyze the rate of conver- 
gence as a function of the time discretization parameter At. 

2. Preliminaries and Notation. We seek numerical approximations of the weak 
form of (1.1): Find u E H' (Q) such that 

(2.1) a(u, v) = fv) for all v (= H 1(Q), 

where 

(2.2) a(u,v)= aVu. Vv+buv dx, (f,v)=ffv dx. 

The spaces Hk for k a positive integer will be the usual Sobolev spaces equipped 
with the norms 

(2.3) IIu1l2 = E IID"uII2 = E (Dfu, Dfu). k 
fI f30 1,01 <k 1,01 <k 

The spaces Hk for k positive and nonintegral will be defined by interpolation and 
Hk for k negative will be defined as the dual of H k. Corresponding to the 
bilinear form, a(., -) is the energy norm denoted IIIU1112 = a(u, u). 

We assume a modest amount of elliptic regularity for the solution of (2.1). 
Specifically, we assume that there exists a constant 0 < a < 1 such that, for all 
f E Ha-, there exists a unique solution u E H+1a of (2.1) and 

(2.4) IIUllI+a < C(a, b, Q)IIflla-1 
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We now turn to the discrete approximation of (2.1). Let '5, j > 1, be a nested 
sequence of triangulations of 2, constructed as follows. Take Cl1 to be a fixed 
triangulation; for T E Cl, denote the diameter of T by hT and let hT dT denote 
the diameter of the inscribed circle for T. Define 

(2.5) hi = max hT, so = min dT, 8 = min hT/hl. 
TE6J1 T E'J1 T E J1 

The constant So is a measure of the shape regularity of the triangles in CY1, and 81 is 
a measure of their uniformity. 

We now construct 'j for j > 1 inductively as follows. For each T E g- 
construct four triangles in 'j by pairwise connecting the midpoints of the edges. 
Each triangulation fj will have shape regularity and uniformity constants So and 1 
and will have hj-maXTE, hT = hT2'j 

With each triangulation 'j, we associate the Nj-dimensional space DTj of 
C ?-piecewise linear polynomials. Since the triangulations are nested, we have 

9Dkj c 6Xj+l, j > 1. The spaces 9Dk satisfy the following standard approximation 
property [4], [5], [16], [21]: If u E Hs, 1 S s < 1 + a, then there exists Uj E 
such that 

(2.6) IIu - ujllo + hjllu - ujlll < C(80, a1, T)hjsjjujjsI 
The finite element approximation of (2.1) is: Find uj EC TRj such that 

(2.7) a(uj, v) = (f, v) for all v E 9RcD 

In our multi-level procedure, we will have occasion to consider problems of the 
more general form: Find z E 9RC such that 

(2.8) a(z, v) = G(v) for all v E DRj, 

where G is a linear functional. 
Associated with each space DRD1 are eigenvalues &J) and eigenvectors x4(J, 

1 < i < Nj, satisfying 

(2.9) a(44'), v) = XW)(44i), v) for all v E (j. 

Without loss of generality, we can require 

(2.10) ?~~~ < XP < '2J) S . . . <At 
(2.10)o xyx' 

( 441), 44k )) = aSik' a ( 44', 44 ) = X ik 

where ik is the Kronecker delta. 
A simple homogeneity argument shows 

(2.11) X(,) < C(a, b, d0o, 81, j)h2 

(Hereafter, we will drop the superscripts on the &J,') and 44J).) We associate with 
each space the discrete norms Ills, -2 < s < 2, defined as follows. For X E Dii 
X = E .N$ c,4A; and 

Nj 

(2.12) IIIX1112 = E c&5, -2 s < 2. 
i=l1 

Note that IIIXIIko = I1X11o and 11IX1I = IliXIII are the usual L2 and energy norms. 
It is also useful to associate with 9ThJ a symmetric, positive definite bilinear form 

bj(., .), which is comparable to the L2 inner product. In particular, we assume 
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there is a constant /3, independent of h , such that 

(2.13) 0 < ,B' < b( ) < ,B for all v E 6XT, v 7# O. 
(v, v) 

We define eigenvalues &(i) = i and eigenvectors 4,.() = {, 1 < i ? NJ, by 

a(4j, v) = kbj(4j, v) for all v E j, 

(2.14) O <XA?X2 ?XN, 

bij(/ 4k) j= ik' a(i, 4'k) = XSik. 

It follows from (2.1 1) and (2.14) that 

(2.1) XN= mx a(v, v) <8max -a(v, v) b,-2 ~ 
(2.15) XN, = mEa b ( ) A a ?< C(a, b, Q, do, 81, 8)hj v E GjT bj(v, v) v E GXit (v, v) - 

V#O V7#0 

If X E j, then X = I 'J1 , and we define 

NJ 

(2.16) IIIX1112 = ! -2 < s < 2. 
i = 1 

Note that I1IX11I1,b = IIIXIII, and that IIIXIIIO,b is comparable to IIXIIo; thus we expect 

IIIXIIIs,b to be comparable in some sense to IIXILs for 0 < s < 1. We make this 

precise in Lemma 1. 

LEMMA 1. Let IIIXIIIs,b be defined by (2.16). Then there exists a constant C= 

C(a, b, d0, 81, Q, ,3) such that, for 0 < s < 1, 

(2.17) CII Xlls < IIIXIIIs,b < CIIXIIs, 

for all X E DR-T 

Lemma 1 is proved in the Appendix. 

3. The k-Level Iteration. In this section we define and analyze the k-level scheme 
for solving (2.7). This procedure is actually composed of two recursive processes. 
The overall process involves solving problems (2.7) sequentially for j = 1, 2 .... 
The second process involves generating approximate solutions of more general 
problems like (2.8). This second process forms the foundation upon which the 
overall algorithm for solving (2.7) rests. Thus, we begin by inductively defining a 
single iteration of the k-level scheme for solving (2.8) withj = k: 

(a) If k = 1, (2.8) is solved directly. 
(b) If k > 1, one iteration of the k-level scheme takes a given initial guess 

ZO E 6)k to a final guess Zm +I E 6k (m an integer to be determined later) as 
follows: For 1 < 1 < m, z, is defined by 

(3.1) (z, - z1, v) = XA {G(v) - a(z1, v)} for all v E DRk. 

Let q E Tk -1 be the approximation of q- E (lk -1 obtained by applying p 
iterations of the k - 1-level scheme to the residual equation 

(3.2) a(q-, v) = G(v) - a(zm, v) _ G (v) for all v E 6k- 1, 

starting from initial guess zero (p is an integer to be determined later). Then set 

(3.3) Zm+1 = Zm + q. 
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Equation (3.1) is called a smoothing iteration. Its purpose is to damp compo- 
nents of the error which oscillate on the order of the mesh size in 5Lk. Once these 
oscillations have been damped, the error can be well approximated by an element 
q E- -1k' a space whose dimension Nk -I Nk/4. Thus, in (3.2), we approxi- 
mately compute the elliptic projection of the error into G-k -1 using p iterations of 
the k - 1-level scheme applied to a problem of the form (2.8) with j = k - 1. 

Note that (3.1) requires the solution of a linear system involving the mass (Gram) 
matrix at each step. We shall see below that (3.1) can be replaced by other, 
computationally more attractive, iterations without affecting the character of our 
convergence results. The use of the mass matrix simplifies the initial analysis, since 
the convergence of (3.1) does not depend on the choice of basis. Also, our use of 
XNk in (3.1) is convenient but nonessential; any upper bound of the form (2.1 1) will 
suffice. 

THEOREM 1. Let (2.4) hold and let p > 1 be any integer. Then there exists a 
constant 0 < y < 1, and an integer m > 1, both independent of hj, such that if 

(3.4) 1114 - qlll < -yP11 11 
then 

(3.5) jllz - Zm+ 1lii < YIIZ - zolill 

Proof. Our proof is motivated by the work of Bakhvalov [1], Brandt [6], 
Fedorenko [1 1], [12], and Nicolaides [17] for finite difference equations. The result 
is also similar to one obtained independently by Hackbusch [14], [15]. Note that 
(3.4) is essentially an induction hypothesis asserting that the k - 1-level scheme 
can reduce the error by a factor of y in each iteration. 

We begin with (3.4). Define the error e, by 

E = z-z,, 0 < I < m + 1. 

Then, from (3.1), we have 

(3.6) (el, v) = (el v) - X,la(E1, v), 1 < I < m. 

Expanding co in terms of the eigenfunctions (2.9)-(2. 10) as o= k ,I ci4i, we have, 
from (3.6), 

Nk 

(3.7) = E cik(l - 
Ni/AN), 0 < 1 < m. 

i=l1 

Thus, we have 

(3.8) III<mIII < Illoli 
We shall analyze (3.2) in two steps. First, we estimate the effect of the recursion. 

From (3.2), we have 

(3.9) a(-cm, v) = 0 for all v E Dkk- 1. 

Taking v = q in (3.9) shows 

(3.10) 1114111 < IllCEm11l 

Using the hypothesis (3.4), (3.8), and (3.10) yields 

(3.11) 1114 - qlll < yP11c0jllj. 
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We are left with estimating the error in the elliptic projection (3.9). Now 

(3.12) 11 11 -Em||2 = a(q -Ecm, 4 -Ecm) = -a(q Em' Em) < 1114 EmIII1_acIIEmIIi.+a 

To estimate Icm IIl+a, use (2.12) and (3.7) to see 
Nk 

|||EmIII1+a = E C7X,14+'(l - X,./XN)2m k INjI g(X)I|e1o, i]IIIcoIII, 
i-1 

where g(x) = xa(1- X)2m. A simple calculation shows the maximum of g(x) on 
[0, 1] occurs at x = a - (2m + a)- 1. Thus, we have 

(3.13) IIICEMIIIl+a < Chk cma/2IlIloIII, 

where we have used (2.1 1). 
To estimate 1114 q- cm II1-aI we use a standard duality argument and Lemma 1. 

Let p e Ha and q E H' satisfy 

a(Qq,v) = (p,v) forallv E H1. 

Taking v = 4-Em we have, for any X E DZk- I 

(P, q cm) = a(-q, 4 Em) = a(-q - Xi q -m) 

< hk II7II1+aIII4 -EMlil < Chk IIPII.- 11114 emill 

where we have used (2.4). Using this and Lemma 1 yields 

(3.14) 1114 -emIIIIa < Cliq EmIla , ChIII4 CEmIll 

Finally from (3.3) and (3.1l)-(3.14) 

(3.15) IIICm+ lii = Illem - qlll < 1114 -qlll + Illem - 4111 < (7P + Cma/2)IIIOlIII. 
To complete the proof choose y such that yP < y/2 and then choose m such that 
Cm-a/2 < y/2. Clearly the choices of y and m can be made independent of hj. 
Using these bounds with (3.15) completes the proof of Theorem 1. 

Before proceeding to convergence results for the L2 norm, we pause to make 
several remarks. First, (3.15) can be sharpened somewhat by noting 

IIIEm11112 = 1em - q1112 = 11m - -41112 + 1114 -q1112 + 2a(em - 4, 4 -q) 

= IllCm - 41112 + 1-11 q112, 
where we have used (3.9). This leads to 

Illem+ 11112 < (72p + Cm-a)1III01112. 

To obtain the smallest value of y for a fixed m, i.e., that value which satisfies 

.y2p + Cm -a = 72 

we must determine the roots of a polynomial of degree p in -y2 It is easy to see that 
the root of interest is formally given by a power series expansion of the form 

Y j=O i ma m (m ) (m) 

To obtain results for the L2 norm, we assume H2 regularity of the solution, i.e., 
(2.4) holds for a = 1. Since Q is a polygon, this assumption implies that Q must be 
convex [13], [21]. 
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COROLLARY 1. Let the assumptions of Theorem 1 hold for a = 1. Then there exists 
a constant 0 Y yK 1 and an integer m > 1, independent of hj, such that, if 

(3.16) llq - qII0 < yPjIqII0, 
then 

(3.17) I|z - Zm+ ill0 < YIz - zollo. 

Proof. Corollary 1 is similar in character to results obtained by Nicolaides [18] 
for the 12 norm. From (3.7) it is immediate that 

(3.18) IICmIllo < 11ollo0 

The duality argument leading to (3.14) now shows 

(3.19) llq- emllo < Chklllq _emlll 
To obtain the analogue of (3.11) use (3.16), (3.18), (3.19) and (2.11) to see 

(3.20) l~lIq qllo < YP lq1 < y {l4q -mIlo + IlImIlo} < y {ChkIlIq mIlll + IItoIIo} 

yP { Chk X/2 + il}Hollo < Cypllollo. 

Finally from (3.12), with a = 1, and (3.19) 

(3.21) ~ 1 
- 

_ E 112 < Ch2111 q--mIII2 ? Ch II mIIOIIICmIII2. 

An argument similar to (3.13) shows 

(3.22) llImIII2 < Ch,72m-1lc0110. 
Thus, from (3.20)-(3.22), we have 

IlIm+110 < liq qllo + Ilem - qIIo < C(yP + m )IIcoIIo, 

and Corollary 1 follows. 
In practice, we prefer to replace the mass matrix on the left-hand side of (3.1) in 

order to reduce the cost of the smoothing iteration. Let bk(., .) be a symmetric, 
positive definite bilinear form satisfying (2.13). We replace (3.1) with the smoothing 
iteration 

(3.23) bk(zI - z-1, v) =XAN{G(v) - a(z1- 1, v)} for all v E DRk. 

COROLLARY 2. Let the hypotheses of Theorem 1 hold. Let p > 1 be any integer. 
Then there exists a constant 0 < y < 1, and integer m > 1 such that, if (3.4) holds for 
the iteration based on (3.23), (3.2) and (3.3), then (3.5) follows. 

Proof. The analogues of (3.6)-(3.1 1) are immediate. The analogue of (3.12) is 

(3.24) 1114q _m II ll q 111 1m11l-a,bI111m1111+ ,b 

The analogue of (3.13) is immediate, as is the analogue of (3.14) (using Lemma 1). 
The remainder of the proof is unchanged. 

There are many possible choices for bk(., .). For example, if we use the standard 
nodal basis, then (2.13) will be satisfied by b1(, -) corresponding to the diagonal of 
the mass matrix, allowing the use of an under-relaxed Jacobi scheme for smooth- 
ing. 

We now consider the overall computational cost of the iteration (3.1)-(3.3). Let 
F(N) be the cost function associated with reducing the error by a factor of y for a 
problem with N unknowns. We assume F(N) is nondecreasing for N > N1. The 
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cost of implementing (3.1), as some variant of (3.23), and (3.3) can be bounded by 
ClmNk = C2Nk where C1m = C2 is independent of k. The cost of the recursion 
(3.2) is pF(Nk- 1). Thus, 

(3.25) F(Nk) -pF(Nkl) + C2Nk. 

Since Nk ~ 4Nkl 1, the solution of (3.25) yields 

(3.26) F(Nk) { (N)log P/lo4 C2NI N_ ( N )lop/lo) 
4 

4 

FN) k)+ C2Nk log(Nk) p =4, 

where F(N1) is the fixed cost of solving a problem on the coarsest grid [19]. 
From (3.26) we have asymptotically (as k -> oo) 

(C3N, p = 2,3, 

(3.27) F(N) < C3N log N, p = 4, 
LC3Nlogp/log4 5. 

The choices of most interest are clearly p = 2, 3, since these lead to an optimal 
order algorithm, in the sense that the cost of reducing the error by a fixed factor y 
is asymptotically no worse than proportional to the number of unknowns. This 
does not necessarily lead to an optimal order algorithm overall, however, since we 
may be interested in reducing the initial error by a factor of hkq for some fixed value 
of q. The straightforward implementation of the k-level scheme would then require 
O(N log N) operations. 

To avoid the appearance of the log N factor, and thus to obtain an overall 
optimal order algorithm, we need to apply recursion once more. We assume that 
the solutions of (2.7) satisfy 

(3.28) Ilu-ujll S ?(h j > 1, 

where (C; is a constant independent of hj, and I I .I denotes any fixed norm, for 
example the energy or L2 norm. Let Uij, j > 1, be approximate solutions of the 
discrete problems (2.7), generated as follows. 

For j = 1, (2.7) is solved directly to obtain fi. For j > 1, starting from initial 
guess fi_ apply r iterations of the j-level scheme to (2.7) to obtain 9j (r is an 
integer to be specified below). Suppose that each iteration of the j-level scheme 
reduces the II norm of the error by a factor of y. Let ej= 11uj - ijII; then 

ej < y - r U _ y - ull + - ull + ej 
? Yrej_ 1 + yrS(;(l + 2I)huj 

where we have used hj = hj-1/2. The solution of the majorizing difference equa- 
tion yields 

(3.29) e, ? ~fC6hj jyr(1 + 2q) 

where we have assumed that (3.29) holds for ] = 1, and that y r2q < 1. Note that 
the choice of r is independent of hj. Thus, from (3.28)-(3.29), 
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The cost of computing ik is bounded by 
k 4 

F(N1) + r E F(N)) < C3- jrNk = C5Nk, 
j=2 

where we have used (3.27) to bound F(Nj). We summarize this result in 

THEOREM 2. Let Theorem 1 hold and let p = 2 or 3. Let the k-level scheme be 
implemented as described above, and let 8 be defined in (3.29). If (3.28) holds and 

then 
(a) I I uj -u fijI < 8 Yu hjq, j > 2, 
(b)IIu - 6 (1 + 6)IhjqiW,j > 1, 
(c) the cost of computing ik is bounded by C5Nk where C. is independent of k. 

We conclude with several remarks about the Dirichlet problem (1.2). In most 
respects, the k-level scheme for (1.2) is similar to that for the Neumann problem. 
We define '5 as in Section 2. Let 91Z c Ho be the space of C0-piecewise linear 
polynomials associated with '57 satisfying the Dirichlet boundary conditions. Then 

lj - I c 9k,j, j > 2, as before. With this modification, (3.1)-(3.3) and the conclu- 
sions of Theorems 1-2 and the corollaries remain valid. 

4. Extensions. In this section we consider several extensions of the k-level scheme 
of Section 3. 

A. The Singular Neumann Problem. When the coefficient b(x) 0 in (1.1), then 
the problem becomes singular. For a solution to exist, the average value of the 
right-hand side must be zero, i.e., 

(4.1) (f, 1) = 0. 

If (4.1) is satisfied, then the solution of (2.1) is determined uniquely up to an 
additive constant. The unique member u* of the set of admissible solutions with 
smallest L2 norm (the least squares solution) is characterized by satisfying (2.1) and 
having average value zero. Let Hl* - {u E H' I (u, 1) = 0). Then u* E H 
satisfies 

(4.2) a(u*,v)=(f,v) forallveHl*, 

and a(-, * ) induces a norm on H 1* comparable to II * II1. 
Let 57 and Dlj, j > 1, be defined as in Section 2, and let 9j= {u E 

j I (u, 1) = 0). Clearly 9Dj* C H'* and DRj* c j* 1, j > 1. Let uj* E- TIj* 
satisfy 
(4.3) a(uj*, v) =(f,v) for all v E 'cD ,j > 1. 

We can apply the k-level scheme to (4.3) withj = k. Assume the analogue of (2.4) 
is satisfied for (4.2) as long as f satisfies (4.1). To verify the analogue of the 
approximation property (2.6), let u E Hs n H1* and z E 'Dj satisfy 

liz - ullo + hllz - ull = inf lix - ullo + hklIx - ulIl < ChjsIlulIs. 

Let z* = z - (z, 1)/(1, 1) E 6XT*. Then 

inf liX - ullo + hllx - ull 

< Iiz* - ullo + hllz* - ull < Chjslluls + C*(2)1(z, 1)1. 
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But 

(4.5) l(Z, 1)1 = l(Z - u, 1)1 < llz - ullolllllo 
and the analogue of (2.6) is an immediate consequence of (4.4)-(4.5). 

The proofs of the analogues of Theorems 1-2 are now straightforward. 
In practice, we prefer to compute with the spaces 9?iT rather than j*. This 

presents no problems. The smoothing iteration (3.1) remains well defined. At level 
one we must solve singular but always consistent linear systems of the form (2.8) 
withj = 1. If we augment (3.1)-(3.3) with 

(4.6) (q, 1) = 0, 
we can always define a unique solution for the linear systems at level one. 
Furthermore, (4.6) implies (Zm +I - zo, 1) = 0, so that the overall process preserves 
average values. 

B. More General Triangulations. Thus far we have insisted that the triangulations 

gj for the k-level scheme be constructed in the precise fashion outlined in Section 3 
and that Q be polygonal. We now explore the consequences of allowing more 
general sequences of triangulations in a polygonal domain, and of allowing a2 
itself to become piecewise smooth. 

A review of our arguments reveals that the characterization of the triangulations 
fj were employed in essentially three ways: 

(i) The quasi-uniformity of the triangulations is implicit in the bounds (2.11) and 
(2.15), and shape-regularity is needed for the approximation assumption (2.6) to 
hold. 

(ii) The nesting of the triangulations allowed us to construct subspaces such that 

6j- 1c 6th, j > 2. 
(iii) The fact that the ratios hj/hj+ l were bounded independent of j was used in 

establishing (3.14). 
While the conditions on 9 and iJ are sufficient to guarantee (i)-(iii), they are not 

necessary. For example, suppose Q is polygonal and '1 is constructed as in Section 
2. Construct gj, j > 1, by taking each triangle in fj- 1 and subdividing it into nine 
congruent triangles, rather than four, by connecting the trisection points for each 
edge as shown. 

Let 91% be the space of C0-piecewise linear polynomials associated with 5F.. Then 
(i)-(iii) above are fulfilled, and the proofs of Theorems 1-2 go through without 
incident, except that hj/h,+ I = 3 rather than 2. 
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The operation counts are modified, however. Equation (3.25) remains valid, but 
now Nj - 9NjA I,i > 1, so the asymptotic bound (3.27) is replaced by 

[C3N, 2 <2 p<8, 

(4.7) F(N) < C3N log N, p = 9, 

C3N1,9PI1?9 9p 10. 

Thus, the k-level scheme in this case remains of optimal order over a larger range 
of p. 

One can generalize, and construct YJ by dividing each triangle in 3j- I into 12 
congruent triangles, and retain the results of Theorems 1-2, as long as 1 is 
independent of hj. The crossover point in the analogue of (4.7) will then be 12. 

At this point, we are unsure of the optimal strategy or strategies regarding the 
construction of triangulations, in terms of minimizing the computational cost for 
problems of practical size. One can reach a given total refinement using fewer 
levels in the recursion, but the work per level will increase to maintain a compara- 
ble rate of convergence. On the other hand, one might settle for the slower rate of 
convergence for 1 = 3 and simply carry out more (but less expensive) outer 
iterations to compensate. 

Optimizing with respect to the parameters p, m, and now 1, as well as with 
respect to the choice of the bilinear forms bj(*, *) to be used in (3.23) is an area for 
future research. We emphasize that such optimization occurs within a class of 
optimal order algorithms, and that one's concern may be directed toward some 
lower order terms, as well as the leading order terms in the operation count, for 
problems of practical size. 

We now consider a k-level scheme for (1.1) when the boundary is piecewise 
smooth. We require each smooth piece of the boundary to have bounded curva- 
ture. The entire boundary should be Lipschitz. We allow triangles with one curved 
edge to be used near the boundary; the curved edge must be a smooth arc. We 
define the midpoint of a curved edge as the intersection of the edge with the 
perpendicular bisector of the chord joining the endpoints. (If hi is sufficiently 
small, this point is unique.) 

Using this definition, we construct triangulations 5j, j > 1, as in Section 2. As 
before, we define hT as the diameter of the circumscribing circle for T E -57, and 
set hj = maxTE hT. Note that in general hi # h 21 -, although the ratios hj/ hj 
will remain bounded independent of j (and will tend to two). 

Let So > 0 be a constant fixed independently of hj. We require each triangle 
T E 5) to be star-shaped with respect to each point in a circle of diameter ohT 
contained in T. For triangles with three straight edges, this is equivalent to our 
previous requirement that 60 < dT. As before, we insure quasi-uniformity by 
requiring hT/hj > 81 > 0 for all T E '5, where 61 is independent of hj. 

Let 9kj be the set of C?-piecewise linear polynomials associated with ?j. For 
triangles with three straight edges, local basis functions can be constructed in the 
usual way. For triangles with one curved edge, only a slight modification is needed. 
Suppose T E 5Jj has one curved edge; define T' as a triangle with three straight 
edges given by the chord joining the endpoints of the curved edge and the two 
straight edges. The usual nodal basis functions, which are just linear polynomials, 
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can be associated with T'. We then extend each basis function as a linear 
polynomial to all of R 2 and then restrict it to T. 

With this definition for 5. and DZ1, requirements (ii) and (iii) above are trivially 
satisfied. The star-shaped requirement for triangles with curved edges can be used 
in conjunction with a recent version of the Bramble-Hilbert Lemma, due to 
Dupont and Scott [10], to establish (2.6) and hence (i). The proofs of Theorems 1-2 
then follow as before. 

We remark that the above constructions do not extend in straightforward fashion 
to the Dirichlet problem. The situation there is complicated by the fact that the 
appropriate trial spaces 9Thj will not in general satisfy the boundary conditions 
exactly, but merely interpolate them at nodes lying on the boundary. See Scott [20] 
for a discussion of interpolated boundary conditions. 

C. Polynomials of Higher Degree. We now extend the k-level scheme to spaces of 
C?-piecewise polynomials of degree s > 1. We assume (without loss of generality) 
that 02 is a polygon and that 5j, j > 1, are constructed as in Section 2. Let OZ 
denote the Nj-dimensional space of C?-piecewise linear polynomials and 6Rj 

denote the Mj-dimensional space of C?-piecewise polynomials of degree s associa- 
ted with 'j. Note %j c 9Tj, kj c %j+1, c 9kJ + I 1. Let uj E tj be 
the solutions of 

(4.8) a(uj, v) = (f, v) for all v E j9 , 

and let z E j9Th satisfy 

(4.9) a(z, v) = G(v) for all v E j, 
the analogues of (2.7)-(2.8). Define eigenvalues A, and eigenvectors {pi, 1 < i < MJ, 
using the analogues of (2.9)-(2.10). One iteration of the "k + 1-level" scheme for 
solving (4.9), forj = k, (the analogue of (3.1)-(3.3)) involves the k + 1 subspaces 

61k and 'Xj, 1 < j < k. This scheme takes initial guess z0 to final guess z +1 as 
follows: For 1 < 1 S m, z, is defined by 

(4.10) (z, - z1, v) = AM'{G(v) - a(z11, v)} for all v E 9Rk. 

We next compute q E Gk, an approximation of q E tk, using p iterations of 
(3.1)-(3.3) applied to the linear system 

(4.11) a(q, v) = G(v) - a(zm, v) for all v E Rk, 

starting from initial guess zero. Then set 

(4.12) Zm+I = Zm + q. 

This scheme is quite similar to the k-level scheme of Section 3, except that we 
have added a (k + I)st special level in which the triangulation remains the same 
but the degree of the polynomials increases. All the requirements for the triangula- 
tions are satisfied, as is approximation property (2.6); thus the analysis of this 
scheme is virtually identical to Theorem 1. 

The analysis of the computational complexity is slightly different. Let F1(M) be 
the positive, nondecreasing, cost function associated with reducing the initial error 
by a factor of y using (4.10)-(4.12). Then (3.25) is replaced by 

(4.13) Fs(Mk) -PFl(Nk) + Cl Mk; 

F1(NJ)) pF1(N_-1) + C2N), j > 1. 
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The function F1(N) can be bounded as in (3.26)-(3.27), and this leads to a bound 
for F,(M), since Nk - Mkr-2. 

(4.14) Fs(M) , C3M forp = 2, 3. 

As in the piecewise linear case, we can obtain an optimal order algorithm for 
reducing the error by a factor of hkq using a slight modification of the argument 
used in Section 3. Assume the solutions uj of (4.8) satisfy the analogue of (3.28) and 
let iuj be approximate solutions generated as follows: Forj = 1 compute Uij by direct 
solution or by a 2-level scheme involving GY, and 9Th1. (Somewhat better conver- 
gence results than those given here are obtainable for the 2-level scheme. See [2].) 
For j > 1, start from u and apply r iterations of the j + 1-level scheme 
(4.10)-(4.12) to obtain u;. 

For this scheme, the proof of the analogue of (3.29) is identical to that of Section 
3, and the conclusions of Theorem 2 remain valid. 

5. Parabolic Problems. Consider the following problem: Find z E 9kj such that 

(5.1) -1(z, v) + a(z, v) = G(v) for allv E j, 

where T > 0 is a positive constant. Problems of this type typically arise in solving 
parabolic partial differential equations which have been discretized in time (T 

cAt, where At is the time step) [3], [7], [8], [9]. We show that for 0 < T < 1 the rate 
of convergence of the multi-level process is independent of T. This is intuitively 
reasonable because this problem should become easier to solve as T -X 0, since the 
mass matrix becomes dominant. In this section we analyze the convergence of the 
multi-level method for (5.1) as a function of the parameter T. 

The principal importance of the result of this section is that it follows from 
Theorem 3 and the estimates of [3] and [7] that, under appropriate hypotheses on 
the parabolic problem, the approximate solution can be calculated in an amount of 
work that is proportional to the number of parameters that define it. Thus, we see 
that the optimal order work estimate proved for the multi-level process for elliptic 
problems carries over to parabolic problems. 

Let triangulations ?- and spaces 9j be defined as in Section 2. Let A1 and 4i be 
defined as in (2.9)-(2.1 1), and define, for X E j, 

IllX1112,= IllX1112 + T- llllX1112 

This is a natural norm in which to analyze the convergence of the multi-level 
scheme for (5.1). 

The single k-level iteration for (5.1) can now be defined analogously to (3.1)- 
(3.3) (for k > 1). Let zo E DTk be an initial guess. Define z, E 6Tk, 1 < / < m, by 

5.2) (Z - z, v)= (INk + T-)-{G(v) - a(z1_, v) - T-K(Z-1, V)} 
for all v E qTk* 

Let q E (i k 1-I be the approximation of 4 E 1k- obtained from p iterations of 
the k - 1-level scheme applied to 

(5.3) a((4, v) + -1(q- v) = G(v) - a(zm, v) - T(Zm, V) for allv e EThk- I 
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Starting from initial guess zero, the set 

(5.4) Zm+I = Zm + q. 

THEOREM 3. Let (2.4) hold and let p > 1 be any integer. Then there exists a 
constant 0 < y < 1, and an integer m > 1, independent of hk, such that if 0 < T 1 
and 

(5.5) 11 q- -qllI1', < -YPI1 q-III1l,r, 

then 

(5.6) IIIZm+i - ZlillWr < YIIIZo -ZlIll,r 

Proof. Let l = Z- zl, < I < m + 1. Expanding eo in terms of the eigenfunc- 
tions and using (5.2) leads to 

(5.7) ci = Nk - P 
T 

__ -1 + 
i-I ( AXNL + T ) I=I ( XNk k A 

the analogue of (3.7). Thus, 

(5.8) III||MIIIi. < (1 + 1/ (TXNk))MIII-oIIIl,T 

From (5.3), we have the analogue of (3.9) 

(5.9) a(q-Em, v) + (- Em, v) = 0 for all v E ehk 1, 

from which it follows that 

(5.10) IIIq4IIl ? SIICmIIIl ? (1 + 1/ (TANk)) MIIIEOIIITr 
The induction hypothesis (5.5) and (5.10) now yield 

(5.11) 111q- -qql,l I yP(l + 1/ (TXN)) mIIIeoIIlTl 

Obtaining a suitable bound for 1114 - EmIIII, is slightly more complicated than in 
the proof of Theorem 1. For any X E Rk- I 

(5.12) 4llq Em IIII,T < Ilix - EmIIIlI l + k 1)l/ X - EmIIo 

Choose X to be the L2 projection of em into 'k- 1; then 

(5.13) lix - EmI11 = (X 
_ 

E" X Em) = -(x - cm, m) < llix - EmIll-Ia IIIEmIIl+ 

To estimate the first term, we use a lemma, due to Thomee [22], (proved in the 
Appendix) to see 

(5.14) Ilix - emIII-1-a < C{IIX - mIIl a + h 2IIx - _mIIa 1> 

Now for r = 1 + a, we have, for any cp E Dk- 1, 

(x C'm, v) _ (x C'm, v P)) 
(5.15) lix - emli = sup - sup ( 

<mCh,IIX C mII0h 
v Ei ii lViir v EH' iiViirk 

Thus, from (5.14)-(5.15), 

(5.16) Ilix - EmI|I|1-a < Ch+ lIX - EmlIO 
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Finally, to estimate IIICmIIIl+a we have 

II2II+ = E C.2Xi tl + k)i ( + 

-2m-I Nk 
2AX 2m Xi 

a 
(5.17) = IN, + AN)- E I(A, + Tc)(,IA-1)( ++L)( ) 

1 -2m-1 

< CXANm (l 
TXN ) II Eo2l 1 , T 

Thus, from (5.12), (5.13), (5.16) and (5.17), we have 

(5.18) 1112 -mIIIl,T 6 Cma/2(I + 1/ (TXN ))MIIIEOIII1T, 

and from (5.1 1) and (5.18) 

IIIEm+11111,T < 1114 qlll1,T + ItIEm qIII1, 

(5.19) < ( I + (Y + Cma/2 )IIIll oII1T 

This is analogous to (3.19) except for the presence of the "helping" term 
(1 + l/(TXNk))-m. The remainder of the proof is standard. 

If T- cAt, then l/(TXN) Chk2l/?t. Therefore, if A?t < O(hk2), the helping term 
is, by itself, sufficient to guarantee the result of Theorem 3, i.e., the smoothing 
iteration (5.2) reduces the error by a fixed amount independent of hk in each 
iteration. For C?-piecewise polynomials of degree s, the analogue of Theorem 3 is 
true. If we discretize in time, using a second order correct in time scheme (for 
example Crank-Nicolson), then we would generally expect to have At2 = O(hs+ 1) 
[7], [8], [9]. Then, for the important cases of s = 1, 2 (piecewise linears and 
quadratics), the multi-level iteration (5.2)-(5.4) would be very useful. For s > 3, the 
multi-level iteration would still converge as predicted in Theorem 3, but At would 
then be sufficiently small that the smoothing iteration by itself would have been 
adequate. Higher order time discretizations [3] lead to similar results. For a qth 
order time discretization Atq = O(hs+1), and the multi-level scheme is superior to 
smoothing for s + 1 < 2q. 

Appendix. 
(A) Proof of Lemma 1. As far as we know, the comparability of norms in Lemma 

1 depends on the fact that all triangles are of approximately the same size, i.e., 
81 hTl/h1 for T e 5j. 

Let P be the L2 projection onto GDj. Considered as a map of L2(Q) onto Y1j, 
equipped with the L2 norm, P is a bounded operator with norm 1. Considered as a 
map of L2(Q) onto 'Xj, equipped with the 11 l 11Ob norm, P is a bounded operator 
with norm bounded by A81/2, since, from (2.13), 

(A. 1) IIIPUIIIO,b < 8,(]l2lplulo < ,B81/211uIIO. 

Next, considered as a map from H1(e) onto j, equipped with the energy (or 
III * 1ll,b) norm, P is a bounded operator with bound C = C(81). To see this, note 
that for appropriate v E DRh1, 
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(A.2) IIIPUIII,b -IIPullI I IlIP(u 
- 

v)III 
+ 

IIIvIII 
< 

Ch-llIP(u 
- v)110 + 

ClIIVII 

< Chj-'hjllulll + Cllulll, 

where we have used (2.6). 
If we interpolate between the latter two maps, the conclusion follows, since 

IIIs11*s,b) < s < 1 are clearly the interpolation norms between 91j equipped with 
the III l 1,10b norm and 6Xj equipped with the energy norm. 

This verifies the right-hand side of (2.17). That the inequality can be reversed 
follows by applying interpolation of operators to the injection map of Xj into L2 
and H 1. 

(B) Proof of (5.14). Let X E- 6lk be fixed and let qh E Rk and q E H' satisfy 

(A.3) a(-qh, v) = (X, v) for all v E 6Xk, 

a(-q, v) = (x, v) for all v E H 

Note 

(A.4) a(-q.- -, v) = O for all v E k. 

If X = .=kI ci4i, then qh = I= CiXic {4i and 

(A.5) IIIXIII-1-a = IIl?1hIIl1-a < ClTlhIll-a 

by virtue of Lemma 1. Now, 

(A.6) ll71hlll-a < 11101,- + llNh 
- 

*l-, < CIIXII-l-a + llNh 
- 

*1-, 

where we have used (2.4). To estimate lI I, - l-l - I we use duality. Let p, ( satisfy 

a(p, v) = (t, v) for all v E H1. 

Taking v = qh- q and using (A.4), (2.4) and (2.6), we have, 

(( - 7 h) = a(p - v, 71 - -1h) < Chk 'IPIli+allq - %1hl1 

ChaUll;lla-1lL'i - %1hl1 V ? 1k- 

Thus, 

(A.7) ll'i - 1hlll-a < Chka|7 - 1hl|l < Chk2all11li+a < ChkallXIla_. 

(5.14) now follows from (A.5)-(A.7). 
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